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I. INTRODUCTION

The Jeffreys–Wentzel–Kramers–Brillouin (JWKB) method is often the tech-
nique of choice in the study of some effectively one-dimensional phenom-
ena in chemistry, like tunneling through potential barriers or the exponen-
tially small splitting of quasi-degenerate energy levels in double wells (see,
for example, the review by Benderskii, Goldanskii and Makarov1). A key in-
gredient for the application of the JWKB method to these problems is the
connection formula between JWKB wavefunctions defined in regions of
space separated by a linear turning point. This connection process usually
has to be carried out through a sequence of consecutive turning points: to
calculate the splitting of levels in a double well one would start with a de-
creasing JWKB wavefunction (say, to the far left), connect it through a turn-
ing point into the first well, then below the barrier, next into the second
well and finally to a decreasing JWKB function in the far right. Whether
this sequence of connections can always be carried out is known as the
“directionality problem” of the JWKB connection formulas.

As instructively and entertainingly pointed out by Dingle2 there is a
“bewildering diversity of views recorded in the literature” on the direction-
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ality of JWKB connection formulas at a linear turning point. For recent di-
versity, compare Fröman and Fröman3 and Silverstone4. The connection
formula problem was in fact solved via the Borel summability of Airy func-
tions4, and the solution is bidirectional. The purpose of this paper is to
demonstrate by a clear, simple, single-linear-turning-point, concrete nu-
merical example the sense in which the connection formula is bidirect-
ional. The example is a particle in a box with a linear external field. Two
different sets of boundary conditions are imposed: finite box (the particle
being constrained by the linear potential and two walls); and semi-infinite
(the particle being constrained by the linear potential and one wall). The
present example is significantly simpler than the two-turning-point exam-
ples discussed elsewhere5.

Before proceeding, we wish to clarify the term “JWKB wave function” as
used in this paper: we mean the complete, Borel-summable asymptotic ex-
pansion of the wave function in powers of h according to Eqs (2)–(5) below,
including exponentially small terms. Any exact wave function is in unique,
one-to-one correspondence with a JWKB wave function, which is in general
a linear combination of two exponentially different JWKB subseries. The
linear coefficients themselves are, in general, asymptotic expansions with
respect to h. They may also involve exponentially small terms and are
unique up to normalization. The connection problem is how the asymp-
totic expansion on the left is to be matched with the asymptotic expansion
on the right of a classical turning point, where the expansions are singular.

II. BASICS

Consider the JWKB wave functions for the Schrödinger equation

− + −






 = ≤ ≤h 2 2

2 12
0 0

m x
kx E x x x

d
d

ψ( ) ( ) (1)

with a classical turning point x0 = E/k lying between 0 and x1, as illustrated
in Fig. 1.

In the classically allowed Region I (0 ≤ x < x0) the JWKB wave function
has the form

ψ π δI d d( ) ( / ) sin( / / ) ./x S x S= − + −−1 2 4h (2)

In the classically forbidden Region II (x0 < x ≤ x1) the JWKB wave function
has the form
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ψ II d d e i d d e( ) ( / ) ( )( / ) ./ / / /x b Q x a b Q xQ Q= + +− − −2 1 2 1 2h h (3)

In Eq. (2), δ is independent of x and is a convenient way to express the
trigonometric linear combination (that anticipates the boundary condition
at x = 0). In Eq. (3), 2b and (a + ib) are independent of x and are a conve-
nient way to express the exponential linear combination (that anticipates
the connection formula). Both a and b may be complex. As is characteristic
of the JWKB method6, the “action functions” S and Q are expanded in pow-
ers of h2:

S S S S= + + + …( ) ( ) ( )0 2 1 4 2h h (4)

Q Q Q Q= + + + …( ) ( ) ( )0 2 1 4 2h h . (5)

For simplicity, we henceforth use units in which h = 2m = 1; however, k is to
remain explicit and later will be given a numerical value.

We remark that the JWKB S(N) and Q(N) for a linear potential are mono-
mially simple7:

Q ( )0 = ζ II (6)

Q ( )1 15
72

= −ζ II (7)

Q cN N N( ) ( )= −ζ II
1 2 (8)
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FIG. 1
Particle in a box with a linear potential and a single linear turning point at x0. Region I
(0 ≤ x ≤ x0) is classically allowed; Region II (x0 ≤ x) is classically forbidden.



S ( )0 = ζ I (9)

S ( )1 15
72

= − −ζ I (10)

S cN N N N( ) ( )( )= − −1 1 2ζ I (11)

where c(N) is a rational constant, and

ζ ζI I= = −( , , ) ( ) /x k E
k

E kx
2
3

3 2 (12)

ζ ζII II= = −( , , ) ( ) ./x k E
k

kx E
2
3

3 2 (13)

The simplicity of S(N) and Q(N) allows us to take expansions to any particu-
lar truncation order N = NT and permits all attention to be focussed on the
connection formulas and the Borel summation method.

III. CONNECTION FORMULA, BOUNDARY CONDITIONS, AND
QUANTUM CONDITION

The proper connection formula depends on how x is treated in Region II,
where it lies on a Stokes line4. It is necessary to “pick sides”. We choose
Im x = +0; that is, we consider (x0 ≤ x ≤ x1) to belong to the upper
half-plane. (With Im x = +0 and real k, ψII represents a real function if, and
only if, a and b are real. Note that there is a connection problem only if
E < kx1; if E > kx1, there is no classical turning point.) The formula that con-
nects ψI and ψII, because of the specification of δ, a, and b in Eqs (2) and (3)
and the choice Im x = +0, is4,8

tan / .δ = −b a (14)

Energy eigenvalues result from the boundary conditions

ψ π δ( ) sin( ( ) / )0 0 0 4= = + −S (15)

ψ( ( / ) )/ ( ) ( )x Q x b b aQ x Q x
1

1 2 20 1 1) d d e (2 e i= = + +− − (16)
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or, equivalently (we start n with 1, because S Ek( ) /0 02
3

3 2≈ > ),

S n n( ) / ( , , )0 4 1 2+ − = …π δ = π (17)

b a Q x/ ( )= − + −(2e i)2 11 (18)

which imply

δ = + −arctan [ ]( e i)2 2 11Q(x ) (19)

and what might be called the “quantum condition”

S n nQ(x )( ) / arctan [ ] ( , , ) .0 4 2 1 22 11+ − + = = …−π π( e i) (20)

The energy eigenvalues En for which En < kx1 are the roots of Eq. (20). For
example, if x1 is large enough that ( e i)2 2 11Q(x ) + − ≈ 0, and if we keep just the
first term S(0) ≈ S(0)(0) = ζI(0,k,E), then

E k n≈ −











2 3
2 3

3
2

1
4

/
/

π (21)

which is a good estimate of the n-th zero of the Airy function, Ai(–k–2/3E)
(cf. ref.9).

A. Approximate Quantum Condition; Traditional JWKB

Asymptotically, |2e ( )2 1Q x | >> |i|, so that (2e ( )2 1Q x + i) ≈ 2e ( )2 1Q x , and one ob-
tains the approximate quantum condition,

S n nQ x( ) / arctan ( , , ) .0 4 1 22 1+ − 





≈ = …−π π1
2

e ( ) (22)

The reader might recognize Eq. (22) as the traditional JWKB result – tradi-
tional in the sense that only formally real expansions are used to represent
real functions. The equation is in general only approximate: the Borel sum
of Q(x1) is complex, so that Eq. (22) cannot lead to exact, real eigenvalues,
whereas Eq. (20) does (vide infra). However, if Q(x1) is approximated by a
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partial sum (all the terms of which are positive), then (i) 2e ( )2 1Q x is gener-
ally greater than 1, and (ii) 2e ( )2 1Q x is forced by the approximation (of par-
tial sum instead of Borel sum) to be real. For the latter reason the i in
(2e ( )2 1Q x + i) should be dropped when using partial sums, while the former
reason assures us there is otherwise no numerical constraint. What is rele-
vant here is that the first approximation (partial summation), which forces
2e ( )2 1Q x to be real, induces the second (to drop the i). Thus, Eq. (22) is the
“correct” approximate form of the quantum condition when using partial
summation. For a discussion of the numerical behavior of partial sums of
asymptotic series near a Stokes line, the reader is referred to a paper by
Olver10.

IV. BOREL-SUM APPROXIMANTS

To obtain accurate numerical results with a divergent expansion, it is neces-
sary to use an appropriate numerical technique: in this case, “Borel-sum ap-
proximants”. To calculate “Borel-sum approximants”, we adapt the method
of Álvarez, Martín-Mayor, and Ruiz-Lorenzo11, viz., the Laplace transform
of the partial-fraction resolution of a Padé approximant of the Borel trans-
form. The detailed steps here are: (i) truncate the JWKB series at order 2NT
in h; (ii) divide each h2M-term by (2M)! to form the truncated Borel trans-
form (remember that the terms with odd powers of h in the JWKB series
vanish); (iii) form a Padé approximant, which we more or less arbitrarily
choose to have numerator and denominator degrees both equal NT if NT is
even, or respectively NT – 1 and NT + 1 if NT is odd (since both numerator
and denominator have to be polynomials in h2); (iv) resolve the Padé ap-
proximant into partial fractions, which is a sum over (what turns out in
the present case to be simple) poles; (v) replace h by ht, multiply by e–t, and
integrate, making use of the incomplete gamma function or equivalently
the exponential integral,

e d e−∞ −

−
= − ≠∫ t r

t r
t r r

1
0 0

0
Γ( , ) , arg (23)

= − ± < ± <−e Ei ir r r[ ( ) ] , arg .π π0 (24)

In this way the JWKB series for S(0) and Q(x1), truncated at order h 2 N T , have
“Borel-sum approximants” that are a sum of NT or NT + 1 incomplete
gamma functions plus a constant.
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Equation (24) explicitly displays the discontinuity of the incomplete
gamma function when r falls on the positive real axis, which is implicit in
Eq. (23). The “Borel-sum approximants” for S(0) should be real. The “Borel-
sum approximants” for Q(x1) should be complex; in fact,

lim Im .( ) ( )

N

N Q x

T

T

→ ∞
= −2 2 1e iBorel-sum approximant of (25)

Thus, some of the roots r in step (iv) for Q(x1) should fall on the positive t
axis, with imaginary part = –0, corresponding to the lower sign in Eq. (24).

V. NUMERICAL RESULTS

This procedure to calculate “Borel-sum approximants” for both S(0) and
Q(x1) can be implemented11 via ref.12 which has built-in functions (or
packages) for Padé approximant, Γ(n,x), and Ei(x). With both S(0) and Q(x1)
calculated, Mathematica’s FindRoot command can then solve for the roots
of Eq. (20).

A. Semi-Infinite Interval

The results of this procedure are displayed in Table I for the first three en-
ergy eigenvalues with k = 300 and x1 = ∞. This case has δ = 0 (in Eq. (17))
and is an excellent example of a “noncontroversial” use of the connection
formula: the JWKB wave function in the classically forbidden Region II is
strictly exponentially decreasing.

One should note that to the extent the limit in Eq. (25) is not reached,
the calculated energy eigenvalues will have artifactual imaginary parts;
they are generally the same order of magnitude or less than the error in the
real parts of the calculated energies. Since the limits of the imaginary parts
are 0, we drop them at the end. For the partial-sum based calculations in
Table I (and later in Table III), we use the approximate quantum condition
Eq. (22), as discussed in Section IIIA. The approximate solutions of this
equation yield real approximate energy eigenvalues.

One sees in Table I that (i) in all three cases the energies calculated via
“Borel-sum approximants” steadily increase in accuracy as NT increases and
numerically converge towards the exact eigenvalues. However, the maxi-
mum accuracy of the partial-sum determination of the first three eigen-
values is limited to 2 × 10–2, 2 × 10–5, and 3 × 10–8, respectively, by the
asymptotic nature of the JWKB series. For this x1 = ∞ case there is no con-
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tention about the connection formula: what is demonstrated is that the
“Borel-sum approximants” of the truncated JWKB series yield numerically
convergent eigenvalues many orders of magnitude more accurate than by
partial summation.

B. Finite Interval

The case x1 = 1 has δ ≠ 0 and is an example where the directionality might
be questioned: to satisfy the boundary condition in the classically forbid-
den region at x1 = 1, the JWKB wave function is necessarily a linear combi-
nation of the exponentially decreasing and increasing components.

There are two relevant JWKB series, S(0) and Q(1), with independent rates
of asymptotic divergence that depend on the numerical values of ζI(0,k,E)
and ζII(1,k,E) (Eqs (12) and (13)). To visualize the behavior of the series,
Fig. 2 presents a semilogarithmic picture of the magnitudes of the terms
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FIG. 2
Study of the divergence of the JWKB expansions for a S and b Q, and the convergence of their
“Borel-sum approximants”, c and d. The plots are: a log10|S(N)(0)|; b log10|Q(N)(1)|;
c log10|(Borel-Σ j

N
=0 – Borel-Σ j

N jS=
−
0
1 0) ( )|( ) ; d log10|(Borel-Σ j

N
=0 – Borel-Σ j

N jQ=
−
0
1 1) ( )|( ) . The smallest

dots are for the first solution, n = 1, the medium for n = 2, and the largest for n = 3. The more
negative the logarithm, the smaller the term, the better the convergence. Plots a and b are typ-
ical for asymptotic series: the terms first get smaller, then increase without limit. Plots c and d
are typical for a geometrically convergent series: the terms get continually smaller, with an ap-
proximately linear semilogarithmic plot



both for the JWKB series ΣS(N)(0) and ΣQ(N)(1), and for the equivalent series
obtained by subtracting successive “Borel-sum approximants”. The smaller
the magnitudes (i.e., the more negative the logarithms) the more useful
the series. The characteristic asymptotic-series behavior shows the terms
first decreasing, then increasing without limit (a and b). The characteristic
convergent-series behavior is relentless decrease (c and d).

As n increases from 1 to 3, En increases, as does ζI (Eq. (12)). The smallest
S(N)(0) decreases and occurs at higher N (Fig. 2a), and S(0) is easier to calcu-
late (Fig. 2c) – as n increases. At the same time, ζII (Eq. (13)) decreases, the
smallest Q(N)(1) increases and occurs at lower N (Fig. 2b), and Q(1) is harder
to calculate (Fig. 2d) – as n increases. With the value k = 300, three eigen-
values fall below the maximum of the potential (300), which occurs at x =
x1 = 1. For n = 3, ζII ≈ 0.81, which is far from asymptotic (∞): the smallest
term occurs at NT = 2 with value ca. 0.067 (Fig. 2b); the convergence of the
“Borel-sum approximants” to Q(1) is slowest for n = 3 (Fig. 2d).

Table II gives the results of energies calculated via “Borel-sum approxi-
mants” of S(0) and Q(1), with some indication of which quantity requires
the largest number of terms to get the indicated accuracy.

Tables I and II illustrate that the eigenvalues can be obtained to as high
an accuracy as computers permit. No limitation on directionality is appar-
ent or appropriate: the formula is bidirectional.

VI. COMMENT ON PARTIAL SUMMATION AND LACK OF DIRECTIONALITY

Eigenvalues calculated by partial summation of the series for S(0) are re-
ported in Table I for the semi-infinite-interval case, and in Table III for both
S(0) and Q(1) for the finite-interval case. In the finite-interval case, the ap-
proximate, traditional “quantum condition” Eq. (22) can be derived from
the traditional connection formula without restriction of directionality. Ex-
amination of the results for E2 and E3 in Table III, in which representative
values for the truncation levels NS and NQ are given, show that their mini-
mum truncation errors (2 × 10–5 and 3 × 10–2, respectively) are 2 to 3 orders
of magnitude smaller than the energy shift induced by moving the bound-
ary from ∞ to 1 (0.03845 and 1.61, respectively). The changed boundary
condition clearly transmitted the “right” information through the turning
point from right to left in the “wrong” direction. That is, the traditional ap-
proximate connection formula here is bidirectional.

The case of the lowest eigenvalue E1 is the most interesting of the three:
one sees instantly in Table I that E1 cannot be calculated via partial summa-
tion more accurately than 2 × 10–2. The difference between E1 for x1 = 1 and
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TABLE II
Numerical convergence of “Borel-sum approximant” method when x1 = 1 and k = 300: the
errors in the first three energy eigenvalues, with the eigenvalues obtained by solving the
equation S(0) – arctan [(2e i( )2 11Q x + −) ] = (n – 1/4)π, (n =1, 2, 3), where S(0) is calculated as a
“Borel-sum approximant” from terms to order 2NS in h (from Eq. (4)), and where Q(1) is cal-
culated as a “Borel-sum approximant” from terms to order 2NQ in h (from Eq. (5))

E1 = 104.78013348 E2 = 183.2360101517839 E3 = 249.01233

NS NQ E1(NS, NQ) – E1 NS NQ E2(NS, NQ) – E2 NS NQ E3(NS, NQ) – E3

1 2 139741 × 10–8 14 25 799 × 10–13 6 15 95 × 10–5

2 2 –889339 × 10–8 14 26 –457 × 10–13 6 16 –13 × 10–5

3 2 –383926 × 10–8 14 27 293 × 10–13 6 17 113 × 10–5

4 2 –45056 × 10–8 14 28 –135 × 10–13 6 18 –44 × 10–5

5 2 91076 × 10–8 14 29 11 × 10–13 6 19 81 × 10–5

6 2 –4141 × 10–8 14 30 10 × 10–13 6 20 –40 × 10–5

7 2 4487 × 10–8 14 31 –53 × 10–13 6 21 44 × 10–5

8 2 –534 × 10–8 14 32 31 × 10–13 6 22 –25 × 10–5

9 2 464 × 10–8 14 33 –37 × 10–13 6 23 18 × 10–5

10 2 –84 × 10–8 14 34 15 × 10–13 6 24 –12 × 10–5

11 2 69 × 10–8 14 35 –14 × 10–13 6 25 3 × 10–5

12 2 –15 × 10–8 14 36 1 × 10–13 6 26 –4 × 10–5

13 2 13 × 10–8 14 37 –3 × 10–13 6 27 –4 × 10–5

14 2 –3 × 10–8 6 28 1 × 10–5

6 29 –6 × 10–5

6 30 3 × 10–5

6 31 –5 × 10–5

6 32 3 × 10–5

6 33 –4 × 10–5

6 34 2 × 10–5

6 35 –2 × 10–5

6 36 1 × 10–5



E1 for x1 = ∞ is 7.7 × 10–5, more than two orders of magnitude smaller. One
might think that to calculate the difference by JWKB partial summation
would be hopeless. Quite the contrary is true. If one uses the same trunca-
tion level NS for both cases, the energy difference is accurate to 1 in the
fourth significant digit, as seen in Table III.

The traditional connection formula for this problem has no directional
limitations, but partial summation does have accuracy limitations.
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TABLE III
Asymptotic divergence of partial-sum method when x1 = 1 and k = 300: the error in the shift
of the first energy eigenvalue, and the errors in the second and third energy eigenvalues; the
eigenvalues are obtained by solving the equation S(0) – arctan (e ( )−2 1 2Q x / ) = (n – 1/4)π, (n = 1,
2, 3), where S(0) is calculated as a partial sum to order 2NS in h (Eq. (4)), and where Q(1) is
calculated as a partial sum to order 2NQ in h (Eq. (5)). Although the first eigenvalue can only
be calculated to an accuracy of 2 × 10–2, the difference between the eigenvalue for x1 = 1
and x1 = ∞ can be calculated to better than 1 × 10–8 accuracy, with obvious implications
about the bidirectionality of the non-Borel-sum based connection formula

∆E1 = E1|x1=1 – E1|x1=∞ =

0.000077012
E2 = 183.2360101517839 E3 = 249.01233

NS NQ ∆E1(NS, NQ) – ∆E1 NS NQ E2(NS, NQ) – E2 NS NQ E3(NS, NQ) – E3

1 6 219 × 10–9 0 3 –27578 × 10–5 3 0 29 × 10–2

2 6 –47 × 10–9 1 3 430 × 10–5 3 1 –3 × 10–2

3 6 7 × 10–9 2 3 –40 × 10–5 3 2 –24 × 10–2

4 6 59 × 10–9 3 3 8 × 10–5 3 3 –85 × 10–2

5 6 –366 × 10–9 4 3 –4 × 10–5 3 4 –161 × 10–2

6 6 3208 × 10–9 5 3 2 × 10–5

6 3 –3 × 10–5

7 3 2 × 10–5

8 3 –5 × 10–5

9 3 9 × 10–5

10 3 –26 × 10–5

11 3 83 × 10–5

12 3 –333 × 10–5
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VII. MATHEMATICAL ANALYSIS via THE JWKB EXPANSION

As a bonus, it is interesting and instructive to note that, because of the
structure of the S(N) (Eq. (11)), the quantum condition (20) can be solved
for E, or more cleanly 2

3
3 2

k E / , explicitly as a series in ( )n − +1
4 π δ, by using

Mathematica’s InverseSeries command:

2
3

5
72

1255
31104

3 2 1
4 1

4
1
4

k
E n

n n
n

/ ( )
[( ) ] [( )

= − + +
− +

−
−

π δ
π δ π δ+

+ …
]3

. (26)

In the semi-infinite-interval case, δ = 0, and Eq. (26) is an explicit asymp-
totic expansion for (the two-thirds power of) En as a function of n. (It is es-
sentially an asymptotic expansion for the zeros of Ai(–z) (with z = k–2/3E) in
powers of [( ) ]–n − 1

4
1π .) In both cases, the only information about (i) which

eigenvalue, and (ii) the boundary condition at x1, comes in through the val-
ues of n and δ. If Eq. (26) is evaluated by Borel summation, for any trunca-
tion level NS, the NS-“Borel-sum approximant” is an explicit function of
( )n − +1

4 π δ. Plugging in appropriate values of n and δ leads to explicit values
for E1, E2, and E3 for the two cases, as exhibited in Table IV.

VIII. CONCLUSION

The convergence of the “Borel-sum approximants” to the exact eigenvalues,
as presented in Tables I, II, and IV, could not happen for both of these two
companion cases – one in which the wave function decreases exponentially
in the barrier region, the other in which the wave function is a linear com-
bination of decreasing and increasing components – if the connection for-
mulas4 were incorrect or if they were one-directional. Additionally, partial
summation of the divergent series here yields results of accuracy limited
not by the connection formula, but only by the asymptotics (in the normal
way), as presented in Tables I and III. This implies that the traditional con-
nection formula is also not one-directional here. One sees that the nature
of Borel summation is to turn a divergent series into a convergent se-
quence. The significance of Borel summation is that (i) each series, on ei-
ther side of the turning point, is in one-to-one correspondence with the
same analytic function, and (ii) the values of the analytic function on ei-
ther side of the turning point determine the values on the other, by ana-
lytic continuation. Along any path, analytic continuation is bidirectional.

Finally, we point out as another application of chemical interest, that us-
ing the Borel summability of the JWKB wavefunctions and the connection
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formulas without directional restriction, Aoki, Kawai and Takei13 have re-
cently solved the calculation of non-adiabatic transition probabilities in a
Landau-Zener problem with three levels.
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